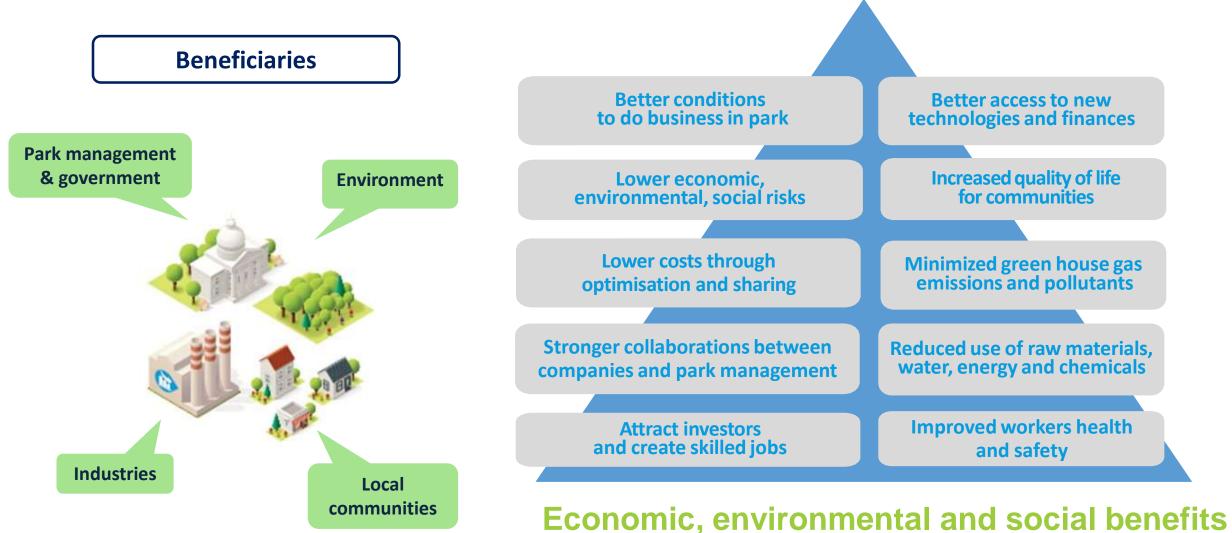


UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Schweizerische Eidgenossensch Confédération suisse Confederazione Svizzera Confederazion svizza Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Economic Affairs SECO

iss Confederation

PLANNING OF NEW ECO-INDUSTRIAL PARKS


Workshop on Eco-industrial Park Development 15 September 2022

Dick van Beers, UNIDO

GLOBAL ECO-INDUSTRIAL PARKS PROGRAMME

ESTABLISHMENT OF NEW ECO-INDUSTRIAL PARKS BENEFITS

Environmental and social risks are economic risks

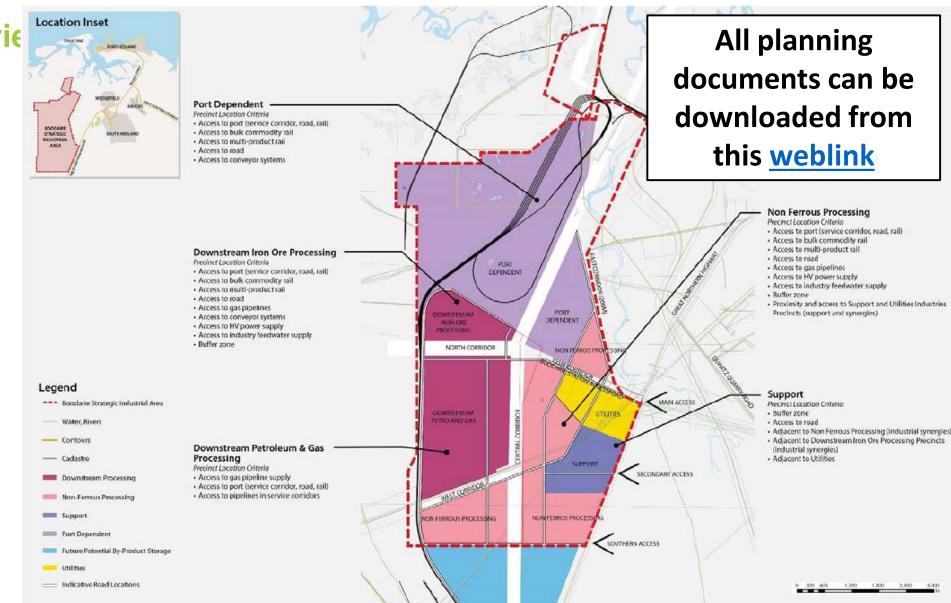
ESTABLISHMENT OF NEW (ECO-)INDUSTRIAL PARKS COMMON CHALLENGES

Common planning challenges facing industrial parks:

- No up-to-date Master Plan Master Plan is more than just a lay-out map!
- Unique value proposition for industrial park is not clear
- Park is planned based on unrealistic market demands
- Insufficient consideration of economic, environmental and social aspects
- Lack of stakeholder engagement in park planning
- Limited consideration of industry clustering and synergies
- Limited integration of utilities and infrastructures
- Buffer zone is not planned or secured properly
- Lack of consideration of long-term development scenarios (e.g. Urban encroachment, new technologies, types of companies)

Eco-industrial park approaches help to address these challenges

Practical examples on next slides



ESTABLISHMENT OF NEW ECO-INDUSTRIAL PARKS DETAILED CASE STUDY

Planning of Boodarie Strategic Industrial Area, Australia

Using EIP approaches to plan and design a better industrial park

- Assessment industry demand for land
- Forecasting industry inputs and outputs to guide infrastructure planning
- Centralised water, energy, by-product facilities
- Synergistic precincts and industry clustering
- And more....

PLANNING OF BOODARIE STRATEGIC INDUSTRIAL AREA, AUSTRALIA FORECAST INDUSTRY INPUTS AND OUTPUTS

							POTENTIAL	KEY INPUTS			POTEN	TIAL KEY OUTPUTS	3
# Potential industry types	Total area		Direct employme	nt	Power	Gas	Domestic use of		Process & cooling water	Raw / source	Water discharge	Products	By-products /
		Total	'White collar'	'Blue Collar'			potable water	water	(lower quality)	materials	, i i i i i i i i i i i i i i i i i i i		wastes
	На	persons	persons	persons	MW	TJ/a	ML/a (ktpa)	ML/a (ktpa)	ML/a (ktpa)	ktpa	ML/a (ktpa)	ktpa	ktpa
DOWNSTREAM IRON ORE PROCESSING	Thu -	porodilo	porodito	percente		10/0	me/a (npa)	merci (nipiti)	mera (nipa)	nipu	me/d (htpd/	nipa	mpu
1 Sintered iron plant	80	400	120	280	25	200	11	2,600	0	6,210	2,340	5,000	311
1 Iron ore pelletising plant	80	400	120	280	10	2,000	11	1,050	1,950	5,250	2,408	5,000	250
1 DRI / alternative smelting iron plant	140	400	120	280	60	50,000	11	2,100	3,900	5,250	4,815	2,000	726
1 Integrated steel making plant	120	400	120	280	80	50,000	11	3,500	6,500	6,072	8,025	2,000	730
1 Ferromanganese production plant	40	400	120	280	50	25.000	11	525	975	28	1,204	10	6
1 Ferrosilicon production plant	40	400	120	280	80	10,000	11	525	975	88	1,204	23	8
1 Iron carbide plant	20	400	120	280	20	10,000	11	1,400	1,100	2,000	2,085	1,000	500
Subtotal	520	2 800	840	1 960	325	147 200	76	11 700	15 400	24 898	22.080	15 033	2 5 3 1
DOWNSTREAM NON-FERROUS RESOURCE PROCESSING													
1 Magnesium production plant	50	400	120	280	8	10.000	11	700	1,300	262	1,605	100	16
1 Titanium production plant	60	400	120	280	145	1,000	11	1,400	2,600	112	3,210	50	11
1 Copper smelter	120	400	120	280	50	10.000	11	525	975	624	1,204	150	474
1 Silicon manganese production plant	50	400	120	280	25	10,000	11	525	975	115	1,204	38	24
1 Silicon metal production plant	50	400	120	280	25	10,000	11	525	975	77	1,204	15	9
1 Chlor-alkali plant	50	100	30	70	90	0	3	70	130	400	161	460	39
1 Aluminium smelter	120	400	120	280	170	10,000	11	1,050	1,950	281	2,408	100	17
1 Chromite processing plant (ferro-chromium production)	100	400	120	280	80	10,000	11	525	975	630	1,204	315	144
Subtotal	600	2,900	870	2,030	593	61,000	79	5,320	9,880	2,502	12,198	1,228	733
DOWNSTREAM PETROLEUM / GAS / COAL PROCESSING								·	·				
1 Methanol plant	50	100	30	70	1	28,000	3	875	1,625	595	2,006	800	125
1 Ammonia / urea plant	65	250	75	175	2	22,400	7	500	2,500	448	2,325	650	477
1 Ethane extraction	60	150	45	105	30	100,000	4	88	163	2,000	201	2,650	100
1 Ethane cracker	50	250	75	175	10	8,750	7	51	94	175	116	145	20
1 Ethylene dichloride (EDC) / Vinyl chloride monomer (VCM) plant	50	400	120	280	8	10,000	11	525	975	365	1,204	340	200
1 Sodium cyanide plant	25	100	30	70	1	10,000	3	525	975	34	1,204	15	2
Subtotal	300	1,250	375	875	52	179,150	34	2,563	6,332	3,617	7,056	4,600	924
PORT DEPENDANT													
1 Large scale processing plant (liquids - not defined)	120	400	120	280	80	10,000	11	350	650	3,413	803	3,250	163
1 Large scale processing plant (conveyors - not defined)	120	400	120	280	80	10,000	11	350	650	2,100	803	2,000	100
Subtotal	240	800	240	560	160	20,000	22	700	1,300	5,513	1,605	5,250	263
UTILITIES AND RESOURCE RECOVERY													
1 Gas fired power station (250 MW)	50	75	23	53	0	10,000	2	200	0	0	180	0	0
1 Gas fired power station (120MW)	25	50	15	35	0	5,000	1	100	0	0	90	0	0
1 Coal fired power station (800 MW)	100	200	60	140	0	0	5	450	2,000	802	1,905	0	30
1 Waste-to-energy and material recovery facility	10	25	8	18	0	2,500	1	100	0	252	90	Double counting	32
1 Industry feedwater facility	65	15	5	11	36	0	0.4	0	0	80,000	15,000	65,000	2
1 Energy facility (electricity, steam, heat, chill)	60	25	8	18	0	Double counting	1	Double counting	Double counting	0	Double counting	Double counting	0
Subtotal	310	390	117	273	36	17,500	11	850	2,000	81,054	17,265	65,000	63
GENERAL INDUSTRY													
64 General industries	160	960	288	672	26	2,080	26	1,280	1,280	1,680	2,112	1,600	80
Subtotal	160	960	288	672	26	2,080	26	1,280	1,280	1,680	2,112	1,600	80
NOXIOUS INDUSTRY													
20 Noxious industries	100	300	90	210	16	1,300	8	600	600	1,050	990	1,000	50
Total Boodarie Strategic Industrial Area - excl total BHP area	2,230	9,400	2,820	6,580	1,207	428,230	257	23,013	36,792	120,313	63,306	93,711	4,643

PLANNING OF BOODARIE STRATEGIC INDUSTRIAL AREA, AUSTRALIA FORECAST INDUSTRY INPUTS AND OUTPUTS

#	Potential industry types	Total area		Direct employm e	ent
			Total	'White collar'	'Blue Collar'
		На	persons	persons	persons
DOM	INSTREAM IRON ORE PROCESSING				
1	Sintered iron plant	80	400	120	280
1	Iron ore pelletising plant	80	400	120	280
1	DRI / alternative smelting iron plant	140	400	120	280
1	Integrated steel making plant	120	400	120	280
1	Ferromanganese production plant	40	400	120	280
1	Ferrosilicon production plant	40	400	120	280
1	Iron carbide plant	20	400	120	280
Subt	otal	520	2,800	840	1,960
Tota	Boodarie Strategic Industrial Area - excl total BHP area	2,230	9,400	2,820	6,580

Purpose of forecasting is to guide:

- **Transport** (location and type of transport routes)
- Engineering (e.g. location and width of service corridors)
- Planning work (e.g. precincts, industry clustering, land uses)

Industrial synergies (e.g. supply chain, by-product,

				POTENTIAL			• • •
#	Potential industry types	Power	Gas	Domestic use of potable water	High qu ality in blue S feed water	Process & cooling water (lower quality)	Raw / source materials
		MW	TJ/a	ML/a (ktpa)	ML/a (ktpa)	ML/a (ktpa)	ktpa
DOWN	IS TREAM IRON ORE PROCES SING						
1	Sintered iron plant	25	200	11	2,600	0	6,210
1	Iron ore pelletising plant	10	2,000	11	1,050	1,950	5,250
1	DRI / alternative smelting iron plant	60	50,000	11	2,100	3,900	5,250
1	Integrated steel making plant	80	50,000	11	3,500	6,500	6,072
1	Ferromanganese production plant	50	25,000	11	525	975	28
1	Ferrosilicon production plant	80	10,000	11	525	975	88
1	Iron carbide plant	20	10,000	11	1,400	1,100	2,000
Subto	tal	325	147,200	76	11,700	15,400	24,898
Total I	Boodarie Strategic Industrial Area - excl total BHP area	1,207	428,230	257	23,013	36,792	120,313

		POTENTIAL KEY OUTPUTS							
#	Potential industry types	Water discharge	Products	By-products / wastes					
		ML/a (ktpa)	ktpa	ktpa					
DOW	/NSTREAM IRON ORE PROCESSING								
1	Sintered iron plant	2,340	5,000	311					
1	Iron ore pelletising plant	2,408	5,000	250					
1	DRI / alternative smelting iron plant	4,815	2,000	726					
1	Integrated steel making plant	8,025	2,000	730					
1	Ferromanganese production plant	1,204	10	6					
1	Ferrosilicon production plant	1.204	23	8					
1	Iron carbide plant	2.085	1,000	500					
Subt	otal	22,080	15,033	2,531					
Tota	I Boodarie Strategic Industrial Area - excl total BHP area	63,306	93,711	4,643					

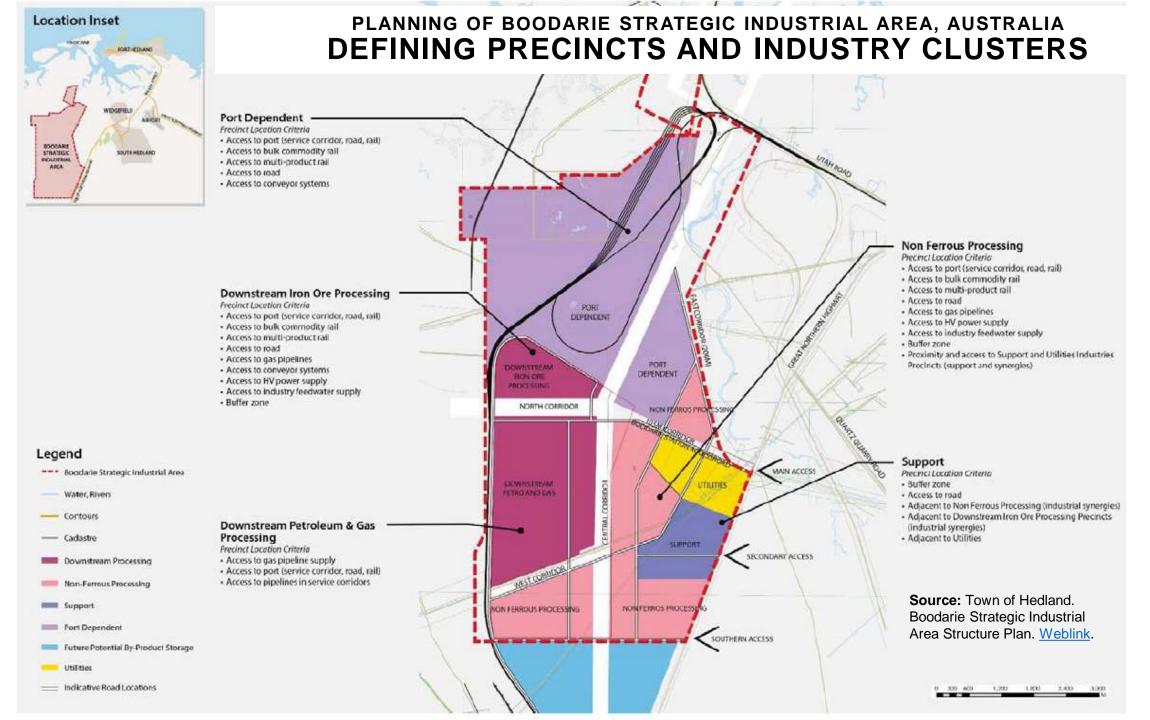
Master Plan to allow for development of synergy opportunities identified based on targeted industries

• Industry sectors may change over time, so may need to adjust planning accordingly

Consider all types of synergies in the planning of industrial parks

• Supply chain / utility / by-product / service / urban-industrial /synergies)

Assess implications from synergy opportunities on planning and design of industrial park


- Centralised "Utility Precinct" with energy/water/waste facilities
- Plan energy/water intensive industries around centralised utilities
- Allow for co-location of synergistic industries through precincts
- Separate organic and inorganic processing facilities
- Design service corridors to allow for potential pipelines and material movements between industries

PLANNING OF BOODARIE STRATEGIC INDUSTRIAL AREA, AUSTRALIA DEFINING PRECINCTS AND INDUSTRY CLUSTERS

Illustrative example only – Not all-inclusive

ANZS	C - Short-listed industries		Industry location criteria							Recommended location within BSIA								t						
Code	Industry type		Ri	isk			Transp	port			Water	Energy	Waste	Lot size	1		Recon			cation	withi	n вэі	A	
		Potential to locate to BSIA (Low, Medium, High)	High risk profile	Industry co-location risk	Access to port	Access to bulk commodity rail	Access to multi-product rail	High wide loads	Access to conveyors	materials handling services	High water requirements	High energy requirements	Access to by-product/waste storage and processing	Large lots	Port Related and Material Intensive	Downstream Iron Ore Processing Precinct	/ Coal / Gas Processing	Resource Processing Precinct	Utilities	Non-Ferrous Resource Processing	General Industry Precinct	Noxious Industry Precinct	Buffer zone	Boodarie Support Area (east of BSIE boundary)
18	Basic Chemical and Chemical Product Manufacturing	High	xx	xx	xx	×	х			XX	×	×	x	XX	0			0						
19	Polymer Product and Rubber Product Manufacturing	Medium	х	x			x			x	x	X		х			0				0	0		\square
201	Glass and Glass Product Manufacturing	Low																			0			
202	Ceramic Product Manufacturing	Medium																0			0			

ESTABLISHMENT OF NEW ECO-INDUSTRIAL PARKS PRACTICAL EXAMPLE

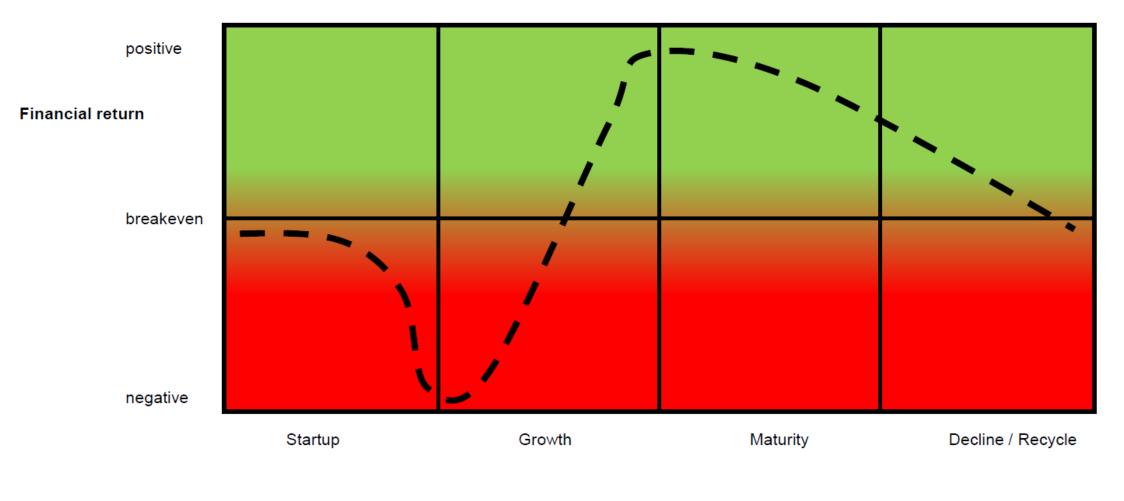
Planning of Pucallpa eco-industrial Park, Peru

Using EIP approaches to plan and design a better industrial park

- Multi-stakeholder workshops
- Review industry demands
- Encourage synergies and infrastructure sharing
- Optimised transportation and buffer zones
- And more....

Source: Van Beers D., Alegre M., Schwager P., (2014). Concept design of Pucallpa as eco-industrial park. UNIDO assignment Ministry of Industry (PRODUCE), Peru.

LIFE CYCLE PHASES OF (ECO-)INDUSTRIAL PARKS



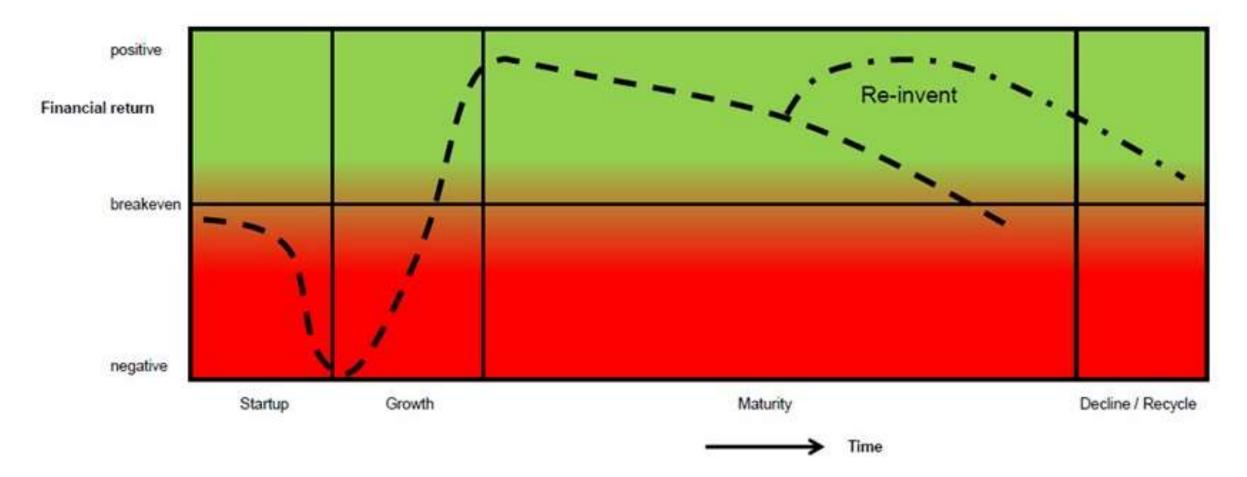
11

LIFE CYCLE PHASES OF INDUSTRIAL PARKS AND HOW TO MANAGE ACCORDINGLY

The return is different in the lifecycle phases / idealistic:

Optional slide

Source: Dr. Ernst Grigat. Partner, Sapherior GmbH. GEIPP Study Tour. June 2022, Basel,

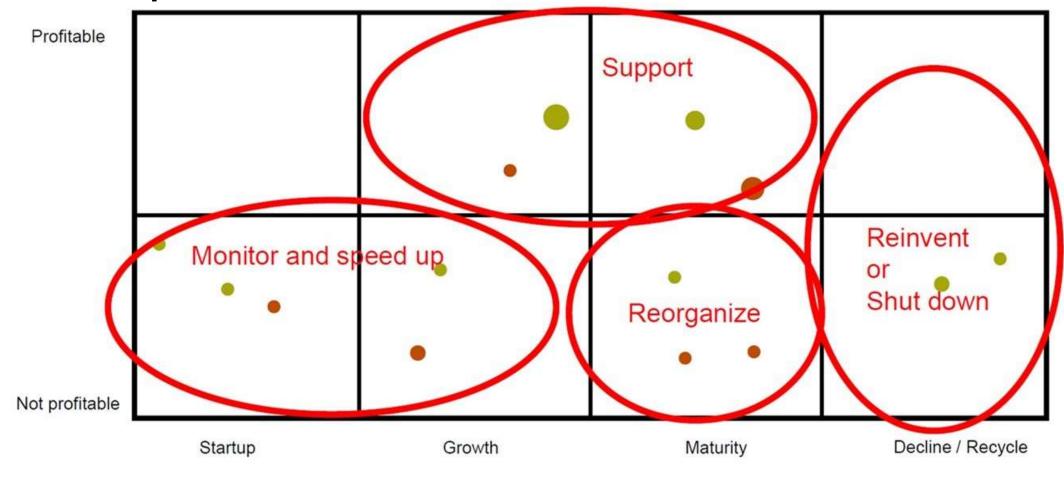

Slide 2 of 4

LIFE CYCLE PHASES OF INDUSTRIAL PARKS AND HOW TO MANAGE ACCORDINGLY

Slide 3 of 4

Try to extend a profitable maturity phase, re-invent the business as needed:

Optional slide


Source: Dr. Ernst Grigat. Partner, Sapherior GmbH. GEIPP Study Tour. June 2022, Basel, Switzerland

LIFE CYCLE PHASES OF INDUSTRIAL PARKS AND HOW TO MANAGE ACCORDINGLY

Slide 4 of 4

On a country level, industrial parks can be viewed as a portfolio

Source: Dr. Ernst Grigat. Partner, Sapherior GmbH. GEIPP Study Tour. June 2022, Basel, Switzerland

Sapherior

KEY FIRST STEPS **BEFORE** DOING DETAILED PLANNING AND DESIGN OF INDUSTRIAL PARK

Review possible site locations for an industrial park

- Selecting the optimal location and size of industrial park is critical to success
- Review of potential site locations is normally done through multicriteria analysis, covering geographical, economic, environmental and social aspects

Develop feasibility study for developing a new industrial park or optimising an existing park

- Covering economic, environmental and social aspects
- Business case need to be based on realistic scenarios

Define Unique Selling Proposition of industrial park

- What are the desired investors / industries?
- Why should they invest in industrial park?
- How do you attract these industries?

Reasons for IP selection by investors

- Raw material supply "Verbund"
- · Permits (availability, speed, political support, ...)
- Brownfield liabilities
- Logistics
- Skilled labor
- · Cultural fit (most underestimated factor!)
- Access to knowledge (Universities, Research Institutes, ...)
- Time to market
- · Expat living conditions

© 2022 Sapherior

DETAILED PLANNING AND DESIGN INDUSTRIAL PARK THROUGH MASTER PLAN

A master plan is a comprehensive document that guides development of the industrial park.

- Need integration with urban/regional plans
- Reviewed every 3-5 years or after significant developments

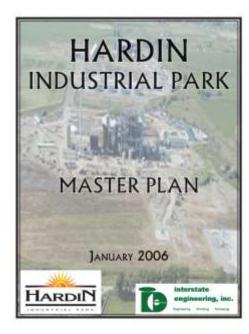
Different terminologies are used internationally

• E.g. Master plan, structure plan, development plan

A master plan is more than a lay-out map of industrial park!

Key contents of a Master Plan

- Overview of the industrial park
- Business case and unique selling proposition
- Management and governance model
- Infrastructure and service needs assessment
- Legal compliance review
- Land use break-up and zoning of the site
- Basic and technical infrastructure
- Environmental infrastructure
- Social infrastructure
- Arrangements to regulate the development and use of land within industrial park
- Plans and thematic layers in the required scale


PRACTICAL EXAMPLE HARDIN INDUSTRIAL PARK, MONTANA, USA

Structure of Hardin Industrial Park Master Plan

TABLE OF CONTENTS

TABLE OF CONTENTS	
LIST OF TABLES	ü
LIST OF FIGURES	
PROJECT OVERVIEW	1
Introduction	
Project Purpose	
Project Goals	
Public Involvement Process	
MARKET IDENTIFICATION	2
PHYSICAL SITE ANALYSIS AND LAND PLANNING	ŝ
Phase I Environmental Site Assessment (ESA)	
Historical Recognized Environmental Conditions	5
De Minimis Conditions	5
Recognized Environmental Conditions	5
Critical Issues Analysis	
Land Use Planning	
Preliminary Opportunities and Constraints	7
Land Use Alternatives	
Design Guidelines – Landscape	
Purpose	
Objectives	
Street Frontage	
Parking Lots	
Storage Areas	
Remaining Property Area	13
Noxious Weeds	
Irrigation	
Maintenance	
WATER SYSTEM PLAN	
General	
References	
Existing Water System	
Raw Water	
Raw Water Collection and Transmission System	
Water Treatment Plant	
Distribution System	
Storage Reservoirs	
Industrial Park Water System	
General	
WASTEWATER SYSTEM PLAN	
General	
References	
Historical Population Summary	
Population Projections	

Collection System	
Wastewater Lift Station	
Force Main	
LIGHTING, POWER, AND COMMUNICATIONS SYSTEM PLAN	32
Lighting	
Electrical Power Distribution	
Communications	
TRANSPORTATION PLAN	
Regional Roadway Network	
Local Roadway Network	
Multi-Modal Transportation Facilities	
Alternatives Development and Analysis	43
Existing Traffic Volume	
Trip Generation & Projected Traffic	
Recommended Transportation System	
STORMWATER MANAGEMENT PLAN	
Storm Sewer	
Floodplains	
Cost Éstimates	

Structure plan documents can be downloaded from: www.tworiversauthority.org/Master_Plan_Final.pdf

OVERVIEW OF UNIDO'S EIP TOOLS

Planning tools Park level	Implementation support tools Park level	Implementation support tools Country level	Monitoring tools Park level
EIP Concept Planning Tool Assist in sustainable design of an industrial park	EIP Assessment Tool Assess park against International EIP Framework and identify EIP opportunities	EIP Selection Tool Select parks with high potential for EIP development and successful EIP projects	RECP Monitoring Tool Monitor and report results of RECP assessments in industrial parks
Master Plan EIP Review Tool Guide sustainability review of existing Master Plan	EIP Management Services Tool Strengthen and advance services provided by park management to tenant companies	EIP Policy Support Tool Support EIP policy development and implementation processes	EIP Opportunities Monitoring Tool monitor and report impacts from EIP opportunities in industrial parks
	Access to Finance Tool Identify, review and access available financing options for feasible EIP initiatives		
	Industrial Symbiosis Identification Tool Support the identification of waste exchanges between companies		

Tools have been applied in GEIPP countries and beyond: Colombia, Egypt, Indonesia, Peru, South Africa, Ukraine, Viet Nam

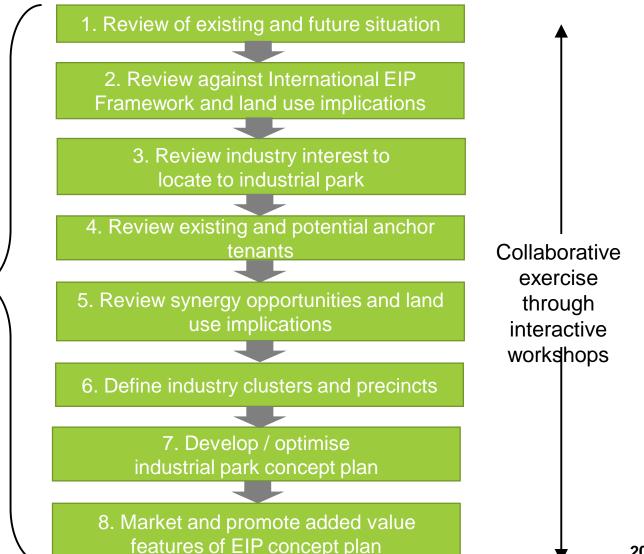
Each tool provides example of use in specific country.

UNIDO's EIP Toolbox is available online: https://hub.unido.org/eco-industrial-parks-tools 18

MASTER PLAN EIP REVIEW TOOL AND EIP CONCEPT PLANNING TOOL

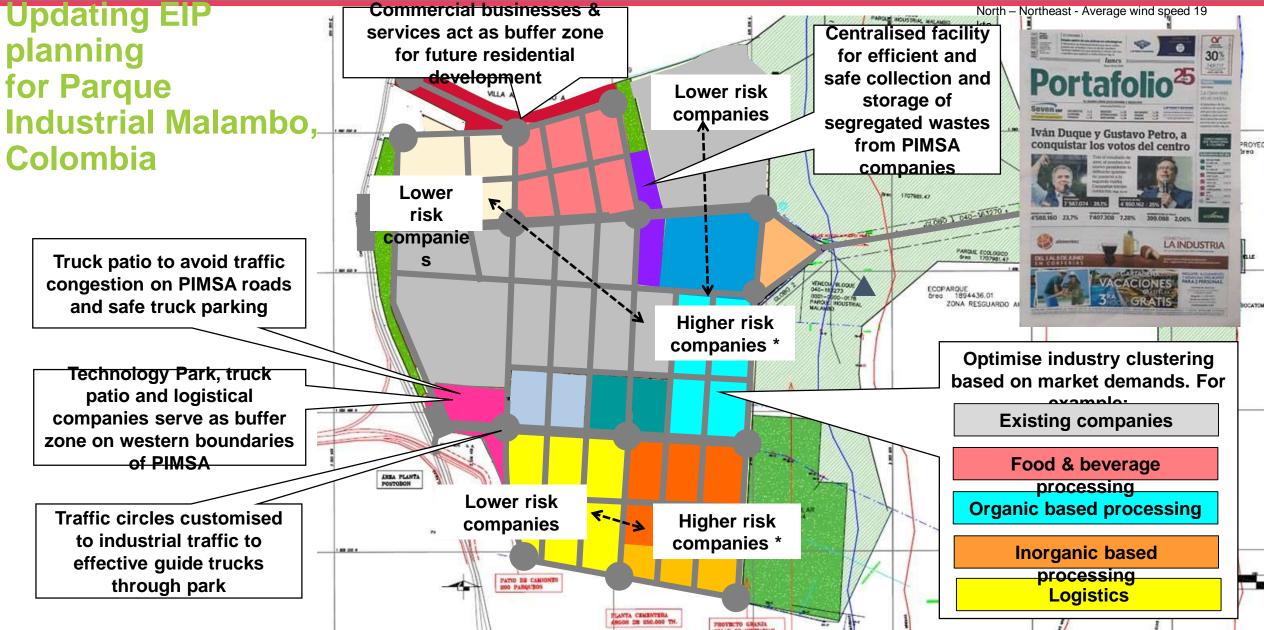
	EIP Concept Planning Tool	Master Plan EIP Review Tool
	Simila	rities
Targeted users	Park management (inter)national service provid	•
	Differe	ences
Tool objectives	Assist in sustainable design of industrial park	Guide sustainability review of existing Master Plan
Recommended starting point for using tool	 Initial design and planning of new industrial park Start new development phase of existing park 	Planned or existing industrial park with existing master plan

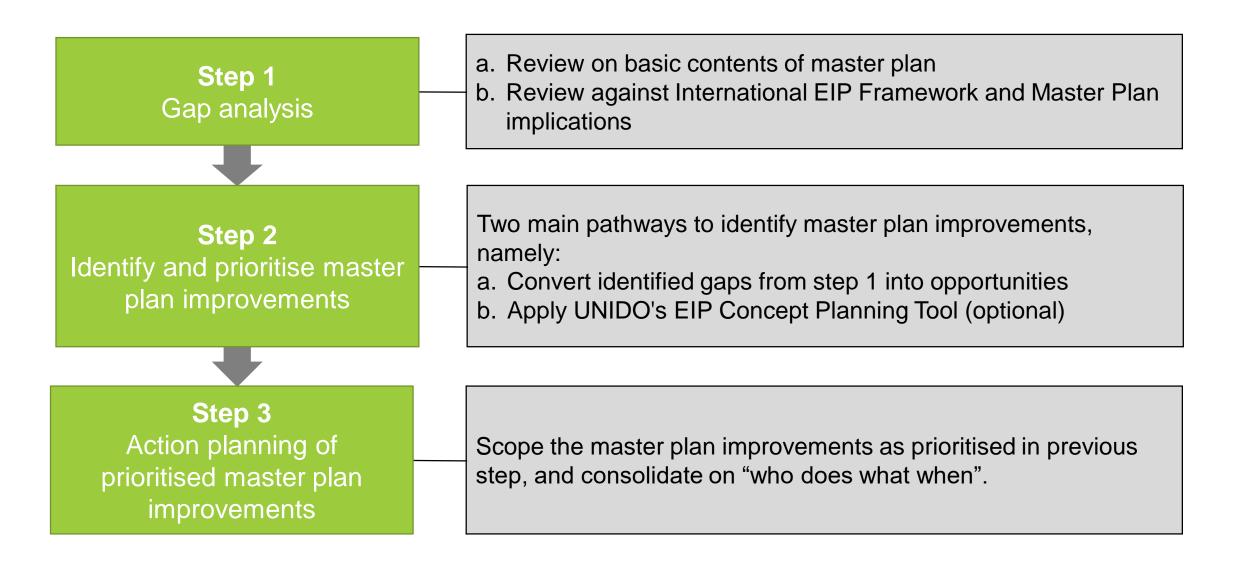
the second second second	
Contraction in the second s	
And the second se	
in and the	
COLUMN TO BE A	
Contraction and the	
And the second second	
A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	


EIP CONCEPT PLANNING TOOL

Opportunities:

- Understand industrial land demands
- Attract synergistic anchor tenants to industrial park
- Encourage industrial synergy development
- Optimise industry zoning and clustering
- Optimise existing and future infrastructures and utilities
- Reduce economic, environmental and social risks
- Increase competitiveness of industrial park
- Communicate added value features of EIP concept plan to stakeholders





EIP CONCEPT PLANNING TOOL

MASTER PLAN EIP REVIEW TOOL

Example of methodology application Sustainability review of Ancon Industrial Park Master Plan (Peru)

Recommendations to update master plan of Ancon:

- Criteria: Set sustainability criteria for industries and business to locate in and operate in Ancon IP
- Park management: Set up park management system to operationalise sustainability in Ancon IP
- Clustering: Refine industry precincts and define centralised utilities precinct to encourage industrial synergies
- Water: Optimise water supply and recycling system in Ancon IP in order to reduce seawater desalination requirements and maximise reuse of water to highest value applications
- Climate change: Facilitate development climate change strategy for Ancon IP
- SMEs: Develop a strategy to attract (green) SMEs and micro enterprises to Ancon IP
- Anchor tenants: Review and attract synergistic anchor tenants to Ancon IP
- Energy: Identify areas in Ancon IP most suitable for renewable energy generation
- Waste: Consider and plan for a centralised facility to process and recycle wastes and by-products from Ancon IP and regional urban developments

TRENDS ON ECO-INDUSTRIAL PARK DEVELOPMENT

- Trend on EIPs is driven by need to create more competitive industrial parks which can better to maintain and attract investors
 - Investors need sustainable supply of competitive priced water, energy, raw materials
 - Increasing understanding that environmental and social risks are economic risks
 - Pressures within global supply chains to meet international sustainability standards
- There are many international case studies on eco-industrial park development
 - Internationally, eco-industrial park approaches are applied under different names, but underpinning approaches are largely the same.
 - Demand driven park management and governance models, resource efficiency, (urban) industrial synergies, community collaborations, integrated planning and zoning
- Traditional industrial parks which are "just" property development projects where industries are located will become obsolete in the near future

Some case studies that confirm these

trends Boodarie Strategic Industrial Area, Australia. <u>Weblink</u>

Pucallpa Eco-Industrial Park, Peru

Parque Industrial Malambo, Colombia. <u>Weblink</u>

Atlantis Greentech Special Economic Zone, South Africa. <u>Weblink</u>

Ecoplus, Austria. Weblink

Hawassa Industrial Park, Ethiopia. <u>Weblink</u>.

National Eco-Industrial Park Programme, South Korea. <u>Weblink</u>.

PLANNING OF NEW ECO-INDUSTRIAL PARKS INTERNATIONAL LESSONS FOR VIET NAM

- Master plan is critical to guide economic, environmental, and social development of industrial park
 - It is worth the investment to develop and keep master plan up-to-date
- Plan and design industrial parks to minimise economic, environmental and social risks
 - Environmental and social risks and economic risks!
- Need to define unique selling proposition (USP) of industrial park
 - EIP assist (new) industrial parks to have more desirable features for investors compared to "traditional" industrial parks
- Need for multi-stakeholder engagement as part of EIP planning and design process
 - Private sector, government, local community
- Need for appropriate buffer zones to separate higher risk industries and community
 - Buffer zone can be utilised (e.g. light industries, utilities and services, biodiversity areas, recreation)
- Ensure maximum flexibility allow for different development scenarios to happen over time
 - Think short AND long term (20 years +)

POSSIBLE SOLUTIONS TO SPEED UP EIP TRANSITION IN VIET NAM

- Create and promote EIP success cases in Viet Nam, and then have these industrial parks be the "EIP champions" to get other industrial parks on board
- **Regulations** for enable <u>appropriate</u> reuses of water, by-products and wastes
- Apply market and competition driven approaches in EIP related policies and EIP recognition schemes
 - Minimise administration burden to industrial parks and ensure sufficient incentives
- Facilitate access-to-finance, by integrating EIP investments into existing or new financial mechanisms
- Innovative and interactive awareness raising which promote EIPs as a business-driven approach to increase competitiveness of industrial parks and their tenant companies
- Capacity building customized to specific needs of industrial parks, covering all components of EIPs.
 - Potential for train-the-trainer and creating "EIP champions" in industrial parks
- One-stop shop for industrial parks in Viet Nam to access information, technical support, financing advice

Planning of new eco-industrial parks

Questions or comments

Acknowledgements

The Global Eco-Industrial Parks Programme (GEIPP) (2019-2023) is made possible by funding provided by the Swiss Government through the State Secretariat for Economic Affairs of Switzerland (SECO).

Disclaimer

The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of UNIDO, MPI and their governing bodies concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this document are those of the authors and do not necessarily reflect the views of UNIDO, MPI and its governing bodies.

The authors of this training material do not note take responsibility for the (incorrect or insufficient) application of the various EIP methodologies outlined in this training material.